Refine Your Search

Topic

Search Results

Journal Article

Spring Calculations Using Noonan’s XymT Method and an Eccentric Force

2019-10-14
Abstract The usual method of calculating spring deflection is to assume the end force acts through the central axis of the spring. The author takes a different approach where he calculates the eccentricity of the end force and from this calculates the spring deflection due to combined bending and torsion using a completely new model which he names the Noonan XymT Method. Also, the usual method widely used, where a strain energy approach is used, is proven to be in error. That statement is proven using a special example. Rough measurements have shown that the displacements calculated using the Strain Energy Method, can have errors as high as 40%, at a position up 0.6 coils from the bottom of the spring, and 10% at the top of the spring. The reason for this error has been identified, and calculations using Noonan’s XymT Method greatly reduces, if not eliminates, this error. This is particularly relevant in calculating individual coil stiffness and binding.
Journal Article

Spray Behaviors and Gasoline Direct Injection Engine Performance Using Ultrahigh Injection Pressures up to 1500 Bar

2021-07-28
Abstract High fuel injection pressure systems for Gasoline Direct Injection (GDI) engines have become widely used in passenger car engines to reduce emissions of particulates and pollutant gases. Current commercial systems operate at pressures of up to 450 bar, but several studies have examined the use of injection pressures above 600 bar, and some have even used pressures around 1500 bar. These works revealed that high injection pressures have numerous benefits including reduced particulate emissions, but there is still a need for more data on the possible benefits of injection pressures above 1000 bar. This article presents spray and engine data from a comprehensive study using several measurement techniques in a spray chamber and optical and metal engines. Shadowgraph imaging and Phase Doppler Interferometry (PDI) were used in a constant volume chamber to interpret spray behavior. Particle Image Velocimetry (PIV) was used to capture near-nozzle air entrainment.
Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

Soot Oxidation Studies in an Optical Diesel Engine Using Laser-Induced Incandescence and Extinction: The Effects of Injector Aging and Fuel Additive

2021-05-11
Abstract Previous studies have shown that injector aging adversely affects the diesel engine spray formation and combustion. It has also been shown that the oxygenated fuel additive tripropylene glycol monomethyl ether (TPGME) can lower soot emissions. In this study, the effects of injector aging and TPGME on the late-cycle oxidation of soot were investigated using laser diagnostic techniques in a light-duty optical diesel engine at two load conditions. The engine was equipped with a quartz piston with the same complex piston geometry as a production engine. Planar laser-induced incandescence (LII) was used to obtain semiquantitative in-cylinder two-dimensional (2D) soot volume fraction (fv ) distributions using extinction measurements. The soot oxidation rate was estimated from the decay rate of the in-cylinder soot concentration for differently aged injectors and for cases with and without TPGME in the fuel.
Journal Article

Soot Observations and Exhaust Soot Comparisons from Ethanol-Blended and Methanol-Blended Gasoline Combustion in a Direct-Injected Engine

2018-05-07
Abstract Particulate formation was studied under homogeneous-intent stoichiometric operating conditions when ethanol-blended (E10) or methanol-blended (M20) gasoline fuel was injected during intake stroke of a 4-stroke direct-injected engine. The engine was tested at wide open throttle under naturally aspirated conditions for a speed-load of 1500 rev/min and 9.8 bar indicated mean effective pressure. In-cylinder soot observations and exhaust soot measurements were completed for different fuel rail pressures, injection timings, coolant and piston temperatures of the optical engine. Fuel delivery settings were tested with both single and split injections during intake stroke. The target piston temperature of the optical engine was attained using pre-determined number of methane port fuel injection firing cycles. Overall, the in-cylinder soot observations correlated well with the engine-out soot measurements. A warmer cylinder head favored soot reduction for both fuels.
Journal Article

Simultaneous NOX and CO2 Reduction for Meeting Future California Air Resources Board Standards Using a Heavy-Duty Diesel Cylinder Deactivation-NVH Strategy

2019-12-10
Abstract Commercial vehicles require continual improvements in order to meet fuel consumption standards, improve diesel aftertreatment (AT) system performance, and optimize vehicle fuel economy. Simultaneous reductions in both CO2 and NOX emissions will be required to meet the upcoming regulatory targets for both EPA Phase 2 Greenhouse Gas Standards and new Low NOX Standards being proposed by the California Air Resources Board (CARB). In addition, CARB recently proposed a new certification cycle that will require high NOX conversion while vehicles are operating at lower loads than current regulatory cycles require. Cylinder deactivation (CDA) offers a powerful technology lever for meeting these two regulatory targets on commercial diesel engines. There have been numerous works in the past year showing the benefits of diesel CDA for elevating exhaust temperatures during low-load operation where it is normally too cold for AT to function at peak efficiency.
Journal Article

Simulation of the Effect of Altitude and Rotational Speed on Transient Temperatures of Rotating Components

2018-11-13
Abstract During vehicle development process, it is required to estimate potential thermal risk to vehicle components. Several authors have addressed this topic in earlier studies [1, 2, 3, 4, 5, 6]. For evaluation of potential thermal issues, it is desired to estimate the component temperature profile for a given duty cycle. Therefore, the temperature and exposure time at each temperature have to be estimated for each vehicle duty cycle. The duty cycle represents the customer usage of the vehicle for a variety of vehicle speeds and loadings. In this article, we focus on thermal simulation of rotating components such as prop shaft, drive shaft, and half shaft boots. Though these components temperatures can be measured in drive cell or road trips, the instrumentation is usually a complicated task. Most existing temperature sensors do not satisfy the needs because they either require physical contact or cannot withstand high-temperature environment in the vehicle underhood or underbody.
Journal Article

Simulating the Optical Properties of Soot Using a Stochastic Soot Model

2022-04-05
Abstract KL extinction measurements are an attractive soot measurement method common in the literature concerning soot-producing sprays because of their nonintrusiveness and 2D or 3D results. Unfortunately, these measurements often rely on bold assumptions of uniform and monodisperse spherical soot particles. In this work, a Spray A case is simulated using a highly detailed 3D stochastic soot model capable of predicting soot particle morphology. The measured and simulated soot volume fraction are compared, and although the simulated volume fraction magnitudes are approximately correct, the simulated volume fraction lacks a core of high volume fraction that the measured data shows. Optical models based on simulated particle size and shape are applied to the simulated data to find the local optical thickness.
Journal Article

Shot-to-Shot Deviation of a Common Rail Injection System Operating with Cooking-Oil-Residue Biodiesel

2023-06-28
Abstract The shot-to-shot variations in common rail injection systems are primarily caused by pressure wave oscillations in the rail, pipes, and injector body. These oscillations are influenced by fuel physical properties, injector needle movement, and pressure and suction control valve activations. The pressure waves are generated by pump actuation and injector needle movement, and their frequency and amplitude are determined by fluid properties and flow path geometry. These variations can result in cycle-to-cycle engine fluctuations. In multi-injection and split-injection strategies, the pressure oscillation from the first shot can impact the hydraulic characteristics of subsequent shots, resulting in variations in injection rate and amount. This is particularly significant when using alternative fuels such as biodiesel, which aim to reduce emissions while maintaining fuel atomization quality.
Journal Article

Sheet Metal Fatigue near Nuts Welded to Sheet Structures and Bolted to a Rigid Attachment

2022-05-10
Abstract Stress-based sheet metal fatigue near nuts welded to thin sheets is one of the necessary design processes for car bodies. In this investigation, the influence of the attachment contact on the localized fatigue mechanism is examined through finite element (FE) models and controlled fatigue experiments. First, a fatigue experimental setup, which includes a thin-sheet closed-hat section with a weld nut bolted to a thick attachment piece, is designed to minimize the uncertainty of the influence of the fixtures on the experimental results. The experiments are carried out on 0.9- and 1.0-mm thick hat sections with a square weld nut under force control conditions with complete reversed loading. Due to the contact, the test specimen performs as a bilinear spring that has a lower stiffness in the upstroke direction when compared to the downstroke direction where full contact of the attachment occurs with the hat section.
Journal Article

Sensitivity Analysis of the Geometrical Dimensions of the Crankpin Bearing on the Tribological Property of an Engine

2021-09-21
Abstract Under high-speed working conditions of an engine, the lubrication and tribological performance (LTP) of the crankpin bearing (CB) are strongly influenced by the oil film pressure (p) and asperity contact in the mixed lubrication regime (MLR) of CB, while these parameters mainly depend on the CB’s geometrical dimensions including the bearing radius (r b), bearing width (B), surface roughness (σ), gap between crankpin and bearing (c), and crankpin speed (ω). To analyze the sensitivity of the dynamic parameters of the r b, B, σ, c, and ω on the CB’s LTP, a hybrid model of the piston-rod-crank dynamic and CB lubrication is proposed to establish the dynamic equations of the CB. An algorithm program written in MATLAB software is then applied to solve the dynamic equations. The effect of the dynamic parameters of the r b, B, σ, c, and ω on the CB’s LTP is simulated and evaluated via the indexes of the p, asperity contact force, friction force, and friction coefficient.
Journal Article

Self-Driving Car Safety Quantification via Component-Level Analysis

2021-03-29
Abstract In this article, we present a rigorous modular statistical approach for arguing the safety or its insufficiency of an autonomous vehicle through a concrete illustrative example. The methodology relies on making appropriate quantitative studies of the performance of constituent components. We explain the importance of sufficient and necessary conditions at the component level for the overall safety of the vehicle, as well as the cost-saving benefits of the approach. A simple concrete automated braking example studied illustrates how the separate perception system and Operational Design Domain (ODD) statistical analyses can be used to prove or disprove safety at the vehicle level.
Journal Article

Selection of Reference Flux Linkage for Direct Torque Control Based Induction Motor Drive in Electric Vehicle Applications

2019-04-08
Abstract The surge in economic activities, in the developing nations, has resulted in rapid expansion of urban centres. This expansion of cities has caused a rapid increase in vehicular traffic, which in turn has caused deterioration of air quality. To overcome the problem of unprecedented air pollution, the governments worldwide have framed policies for faster adoption of electric vehicles. One of the major challenges faced is the development of low- cost drive for these vehicles and keeping the imports to a minimum. As a result of this, the trend is to move away from the permanent magnet-based motor technology and to use induction motor-based drivetrain. For the induction motors to be successful in electric vehicle drivetrain application, it is important to have a robust speed control algorithm. This work aims at adapting a direct torque control technique for induction motor’s speed control.
Journal Article

Role of Piston Bowl Shape to Enhance Late-Cycle Soot Oxidation in Low-Swirl Diesel Combustion

2019-04-25
Abstract Late-cycle soot oxidation in heavy-duty (HD) diesel engine low-swirl combustion was investigated using single-cylinder engine and spray chamber experiments together with engine combustion simulations. The in-cylinder flow during interactions between adjacent flames (flame-flame events) was shown to have a large impact on late-cycle combustion. To modify the flame-flame flow, a new piston bowl shape with a protrusion (wave) was designed to guide the near-wall flow. This design significantly reduced soot emissions and increased engine thermodynamic efficiency. The wave’s main effect was to enhance late-cycle mixing, as demonstrated by an increase in the apparent rate of heat release after the termination of fuel injection. Combustion simulations showed that the increased mixing is driven by enhanced flow re-circulation, which produces a radial mixing zone (RMZ).
Journal Article

Revisiting Mobility-Based Predictions of Cyclic Minimum Film Thickness in Big-End Connecting Rod Bearings

2021-09-07
Abstract This article compares elastohydrodynamic lubrication (EHL) and mobility-based solution methods for the determination of cyclic minimum film thickness hmin * encountered in four-stroke, big-end connecting rod bearings. Mobility-based solution methods are substantially faster than the EHL method for such bearings, so quantifying the accuracy of mobility-based methods is an obvious benefit to the engine designer. Production-level connecting rods are modeled and analyzed using an established mass-conserving mode-based EHL formulation, accounting for realistic oil feed arrangements and realistic housing deformation associated with structural inertia and surface pressures. From a large set of dimensional studies, it is observed that hmin * calculated using mass-conserving EHL can be bounded by results obtained from finite-bearing mobility formulations, provided that a non-dimensional bearing number Λ falls below a critical value Λ crit ≈ 4.
Journal Article

Review of Research on Asymmetric Twin-Scroll Turbocharging for Heavy-Duty Diesel Engines

2024-02-21
Abstract Asymmetric twin-scroll turbocharging technology, as one of the effective technologies for balancing fuel economy and nitrogen oxide emissions, has been widely studied in the past decade. In response to the ever-increasing demands for improved fuel efficiency and reduced exhaust emissions, extensive research efforts have been dedicated to investigating various aspects of this technology. Researchers have conducted both experimental and simulation studies to delve into the intricate flow mechanism of asymmetric twin-scroll turbines. Furthermore, considerable attention has been given to exploring the optimal matching between asymmetric twin-scroll turbines and engines, as well as devising innovative flow control methods for these turbines. Additionally, researchers have sought to comprehend the impact of exhaust pulse flow on the performance of asymmetric twin-scroll turbines.
Journal Article

Review of Nitrous Oxide (N2O) Emissions from Motor Vehicles

2020-02-27
Abstract Nitrous oxide (N2O) is both an ozone depleting gas and a potent greenhouse gas (GHG), having a global warming potential (GWP) value nearly 300 times that of carbon dioxide (CO2). While long known to be a trace by-product of combustion, N2O was not considered a pollutant of concern until the introduction of the three-way catalyst (TWC) on light-duty gasoline vehicles in the 1980s. These precious metal-containing catalysts were found to increase N2O emissions substantially. Through extensive research efforts, the effects of catalyst type, temperature, air/fuel ratio, space velocity, and other factors upon N2O emissions became better understood. Although not well documented, N2O emissions from non-catalyst vehicles probably averaged 5-10 mg/mi (on the standard FTP test), while early generation TWC-equipped vehicles exceeded 100 mg/mi. As emissions control systems evolved to meet increasingly stringent criteria pollutant standards, N2O emissions also decreased.
Journal Article

Review of 1D Spray Tip Penetration Models and Fuel Properties Influence on Spray Penetration

2020-07-20
Abstract In this article different one-dimensional (1D) models for spray penetration have been reviewed and investigated to confirm their validity. For each model, the underlying assumptions and the main equations were discussed in detail. A comparison between calculated data using these models and measured data showed that one specific semiempirical model exhibits the best agreement with the experimental data. Starting from this semiempirical model, a new model was derived based on the momentum theory. However, the calculated penetrations using both correlations appear to be very similar for diesel fuel (DF). Furthermore, experiments were carried out in a constant volume spray chamber in nonvaporizing conditions using DF and heavy fuel oil (HFO).
Journal Article

Review Research on Isolation Systems of the Cab and Driver’s Seat in Soil Compactors

2023-01-25
Abstract Under the influence of the interactions between the vibratory drum/wheel and deformable terrains, the ride comfort of the soil compactors is greatly affected. Therefore, the isolation systems of the cab and driver’s seat of the soil compactors have been researched and developed to improve ride comfort. Based on the existing research results, this study provides an overview of the development of the isolation systems of the cab and driver’s seat of the soil compactors. The research result shows that the cab isolations used by the semi-active hydraulic mounts (SHM) or semi-active hydraulic-pneumatic mounts (SHPM) can greatly improve the driver’s ride comfort and control the cab shaking, whereas the driver’s seat suspension embedded by the negative stiffness structure (NSS) strongly improves the driver’s ride comfort.
Journal Article

Response Surface Methodology (RSM) in Optimization of Performance and Exhaust Emissions of RON 97, RON 98, and RON 100 (Motor Gasoline) and AVGAS 100LL (Aviation Gasoline) in Lycoming O-320 Engine

2019-08-19
Abstract Federal Aviation Administration (FAA)’s 20 years of research and development with 200 unleaded blends and full-scale engine tests on 45 high-octane unleaded blends has not found a “drop-in” unleaded replacement for aviation gasoline (AVGAS) 100 low lead (100LL) fuel. In this study, analysis of compatibility via optimization of Lycoming O-320 engine fuelled with RON 97, RON 98, RON 100, and AVGAS was conducted using the Response Surface Methodology (RSM). Test fuels were compositionally characterized based on Gas Chromatography (GC) analysis and were categorized based on types of Hydrocarbon (HC). Basic fuel properties of fuels in this research were analyzed and recorded. For optimization analysis, engine speed and fuel were considered as the input parameters.
X